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Abstract

The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three

different types of problems: (a) the distribution of boron and carbon atoms in MB2C2 (M=Ca, La, etc.) phases, (b) the band

structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and

electronic structure of the ternary nitride Ca2AuN.

r 2003 Elsevier Science (USA). All rights reserved.

To understand the electronic structure of solids is
probably not an essential need for a solid state chemist
but certainly can make his everyday work easier and
more intellectually pleasing. The electronic structure is
the most obvious and useful link between the structure
and properties of any solid. Thus, understanding how
the electronic structure of a given material can be
assembled from that of chemically significant building
blocks (and thus, how it can be altered) is a simple yet
very suggestive approach to the main goal of any solid
state chemist: the design and preparation of materials
with controlled properties. That the new materials
suggested by this approach can be actually prepared or
not is something that is related to the art of the solid
state chemist. This is why knowledge of the electronic
structure of the materials on which one is working on
may be not essential. But it can make the quest much
more rational and straightforward, or it can direct the
attention to something which otherwise could seem
outlandish.

Recent advances in density functional theory (DFT)
methods have made first principles calculations feasible
for crystalline solids with unit cells of practically any size
[1–4]. But this does not mean that we can understand the

electronic structure of any solid in a precise yet simple
way. And indeed this is what is needed in order to truly
understand the link between the structure and properties
of solids. Of special note in the search for a simple yet
rigorous conceptual framework along this direction has
been the approach pioneered by Hoffmann [5], Burdett
[6] and Whangbo [7], which led to a series of ideas
building a bridge between the concepts developed by
solid state physicists and molecular chemists. The
development of very efficient computational and con-
ceptual tools makes a very fruitful interaction between
theoretical and experimental approaches to the structure
and properties of solids possible.

Here we would like to discuss some selected problems
which illustrate how theoretical studies can be an
important tool in solid state chemistry. From the very
beginning we would like to emphasize that not
every problem requires the same degree of computa-
tional accuracy [8]. The fact that it is easy to perform
quite precise computations for virtually any solid
does not necessarily mean that this kind of approach
will be the most efficient in highlighting the clues to
solve the problem at hand. Simple methods still have
an important role to play in the search for a rational
way to approach solid state chemistry. It is the art of
the theoretician to choose the simplest but most
informative way to understand the electronic structure
of the materials under consideration. In what follows
we will consider the electronic structure of several

ARTICLE IN PRESS

�Corresponding author. Fax: +34-93-402-12-31 (P. Alemany); Fax:

+34-93-580-57-29 (E. Canadell).

E-mail addresses: alemany@qf.ub.es (P. Alemany), canadell@

icmab.es (E. Canadell).

0022-4596/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-4596(03)00219-6



materials—borocarbides, oxides and bronzes, nitrides—
in order to show how theoretical approaches of different
levels can be used in order to understand different
aspects of the structure and properties of solids. For the
sake of convenience we have chosen examples in which
our groups have been involved but, of course, many
other contributions from other groups could have been
equally chosen.

1. The coloring problem in MB2C2 phases

Given a molecular or extended network and two
different types of atoms, which is the best way to
distribute them in the network for a fixed stoichiometry?
This question, which is known as ‘‘the coloring
problem’’ [9], is frequently faced by solid state chemists.
A simple example is provided by the MB2C2 phases.
Except for M ¼ Sc; all other phases of this type
(M ¼ Ca; Y, La, Ce, Pr, etc.) are isostructural (for
some references see Ref. [10]). The structure can be
derived from the well-known CaB6 arrangement by
removing the apical atoms of each boron octahedron.
Substitution of half the boron atoms by carbon gives the
MB2C2 structure (Fig. 1a). Consequently, the three-
dimensional (3D) structure can be viewed as a series of
layers alternately containing the M atoms and the 4.82

boron–carbon networks. The question is now: how are
the boron and carbon atoms distributed in this network?
Since the early 1970s it was an accepted fact that there
were alternating boron and carbon atoms within the
squares and B–B and C–C contacts between the squares,
as shown in Fig. 1b [10]. Although it could be argued

that the lanthanide d orbitals have some influence in
controlling the coloring, this is not the case for CaB2C2.
Here it is likely that the Ca atom is only acting as a two-
electron donor with respect to the boron–carbon net,
something which is consistent with the known physical
properties of the closely related CaB6. Consequently, it
seems that the preference for a given coloring should be
an intrinsic property of the B2C2

2� 4.82 network.
Because of the presence of donor–donor and accep-

tor–acceptor contacts in the arrangement, this coloring
(coloring I) seems surprising. In addition, it is in conflict
with well-known ideas from organic chemistry concern-
ing the stability of donor-/acceptor-substituted cyclobu-
tadiene and cyclooctatetraene systems. Hoffmann has
shown [11] that for a half-filled cyclobutadiene-type p-
system the all alternate structure (see Fig. 3), where X

and Y are atoms of different electronegativity, is more
stable than that with X2X and Y2Y contacts and the
same result applies for a cyclooctatetraene-type system.
Coloring I fulfills this requirement as far as the squares
are concerned (in fact in the real structure these squares
are distorted to rhombuses) but not with respect to the
octagons also present in the net. A different coloring
which fulfills both requirements is that shown in Fig. 1c
(coloring II). In the mid-1980s, the then accepted
structure for the MB2C2 structure was challenged [12].
On the basis of simple theoretical ideas it was proposed
that a structure based on coloring II was more likely.
Almost 15 years later careful structural studies clearly
showed that coloring II was indeed the basis of the
crystal structure of these phases [13]. In what follows we
briefly outline the theoretical basis which led to the
challenging of the crystal structure.

Tight-binding extended Hückel type calculations [14]
for the 4.82 B2C2

2� network with different sets of
geometric and computational parameters [12] consis-
tently led to the following results: (a) absence/existence
of a band gap at the Fermi level for coloring I/II, and (b)
preference of coloring II over I by about 2 eV per
formula unit. In molecules, the presence of a good
HOMO-LUMO gap is often used as an indicator of
electronic stability. In solids too there is the general idea
of linking stability with the filling of the electron states
up to a band gap. These numerical results thus confirm
the intuitive idea that coloring II should be more stable
than I.

In order to understand why this is so let us consider
the band structures for the two colorings (see Figs. 2a
and b). The results in Fig. 2 correspond to calculations
using exactly equivalent networks, i.e., a common
geometry built from a unique distance and equal
exponents (but different electronegativities) for the
orbitals at each point of the net. With the electron
counting for B2C2

2�, only two of the p bands should be
occupied. The unit cell corresponding to coloring I
contains just a square unit (see Fig. 1b). As can be seen
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Fig. 1. Crystal structure of the MB2C2 (M ¼ Ca; La, etc.) phases (a).

Two different colorings of the B–C planar networks: I (b) and II (c).

Two glide planes are schematically shown in (c).
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in Fig. 2a, the second and third p bands (i.e., those built
from the p2 and p3 orbitals of a square unit, see Fig. 3)
for coloring I cross and this lies at the heart of the
instability of the structure. In contrast there is a band

gap between the second and third pairs of bands for
coloring II (the unit cell for coloring II, as shown in Fig.
1c, contains two symmetry related square units and thus
all bands occur in pairs), which are those built from the
p2 and p3 orbitals of the square unit.

To understand the reasons for the instability of
coloring I, we need to consider the second and third
bands. At the G point they will be built from the in-
phase combination in all directions of the p2 and p3
orbitals of the square unit. These band orbitals are an
in-phase combination of p� orbitals from pairs of
atoms on adjacent squares along the a- or b-direction
(see Fig. 4a). In consequence, these bands appear at high

ARTICLE IN PRESS

Fig. 2. Calculated band structures for colorings I (a) and II (b) of the

4.82 B2C2
2� network. The p bands are dashed for clarity. G; X ; Y and

M refer to the (0, 0), (a�=2; 0), (0, b�=2) and (a�=2; b�=2) points.

Fig. 3. Schematic representation of the p orbitals of a square unit with

two different atoms X and Y ; where X is the more electronegative one.

Fig. 4. Schematic representation of the p2- and p3-based bands for

coloring I of the 4.82 network at the G (a), X (b) and M (c) points.

Shown in (d) are the schematic band dispersions along the G-X-M

lines.
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energy, the band built from p3 being higher because of
electronegativity reasons. When going from G to X the
phase relationship of the band orbitals changes along a

but not along b: Consequently, the antibonding inter-
actions between adjacent cells for the p3-based band at G
become bonding at X (see Fig. 4b), and the band is
strongly stabilized along G-X : In contrast, the p2-
based band with interactions only along b remains
unaltered (see Figs. 4a and b). Moving from X to M

there are phase changes only along the b-direction
and consequently, the orbitals at M will be as shown in
Fig. 4c.

Since a symmetry plane perpendicular to the network
and parallel to a is conserved along G-X and because
of the different behavior of orbitals p2 (A) and p3 (S)
with respect to this plane, the p2 and p3-based bands will
cross along G-X : The two bands will also cross along
the X-M line because of the existence of a second
symmetry plane perpendicular to the network in the b-
direction. With these arguments in mind it is easy to
draw qualitative dispersion lines along the G-X and
X-M lines (see Fig. 4d) that are in excellent agreement
with the results of Fig. 2a (some avoided band crossing
have been indicated with dotted lines).

It is clear that the absence of a gap at the Fermi level
is a consequence not only of the orbital characteristics of
four-center rings but also of the fact that the symmetry
planes in the unit cell have been conserved in the
extended network. The crossing cannot be avoided by
distortion of the squares to rhombuses or by making the
B2B and C2C distances different. The only way to
avoid the crossing would be to lower the whole p2 band
below the p3: In principle, this could be achieved by an
electronegativity change. However, such a change would
imply that an in-phase combination of p� orbitals (see p2
in Fig. 4a) would be lower in energy than an out-of-
phase combination of p orbitals (see p3 in Fig. 4c). As a
result, it is clear that there is no way to avoid such
crossing.

The unit cell corresponding to coloring II contains
two B2C2 units (see Fig. 1c). Consequently there are
glide planes and screw axes running parallel to the a-
and b-directions (in Fig. 1c the glide planes are indicated
by the continuous lines 1 and 2; the combined effect of
the reflection and semitranslation is indicated by dotted
arrows in the case of 2). Because of the double unit cell
there are eight p bands in the band structure (only seven
are shown in Fig. 2b) which pair up at X and remain
degenerate along the X-M line because of the
nonsymmorphic symmetry elements. The important
point of Fig. 2b is that the second and third groups of
p bands do not cross. Intended but avoided crossings
along G-X and G-M are clearly visible. Why these
crossings are avoided can be simply understood.
Because there are two square units in the unit cell it is
possible to build symmetry-adapted combinations of the

p2 and p3 orbitals with respect to the glide planes (see
Fig. 5a) or with respect to the planes perpendicular to
the network and running in the 1=2ða þ bÞ-direction (see
Fig. 5b). Since a glide plane is conserved along the
directions along G-X and X-M and the plane along
1=2ða þ bÞ is conserved along G-M; one of the crystal
orbitals built from p2 is always of the same symmetry as
one of those built from p3: These two orbitals mix and
the crossing is avoided along the three symmetry lines.
The mixing is strong enough to open a gap throughout
the Brillouin zone. Thus, there are the symmetry
properties of the two colorings which regulate their
relative stability.

Three-dimensional calculations including the calcium
or lanthanide atoms do not change any of the essential
points discussed above so that they must be of marginal
importance on favoring one or the other coloring.
Essentially, they must act as two-electron donors with
respect to the boron–carbon network, the other
electrons remaining in the relatively narrow d or f

bands of the metals. As mentioned, independent
structural work from different groups [13] confirmed
that coloring II was chosen by the MB2C2 phases. Of
course, first-principles calculations could have been used
to reach the same conclusion. And indeed, they could
afford valuable information concerning actual details
of the different possible structures (distortions of the
squares, relative arrangement of the layers, etc.) [13a].
However the symmetry arguments captured the essence
of the problem in simple terms and thus provided strong
arguments for the need to reconsider what otherwise
seemed a well-settled question. This is an example of
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Fig. 5. Symmetry-adapted combinations of the p2 and p3 orbitals with
respect to the glide planes (a) and with respect to the planes

perpendicular to the network and running in the 1=2ða þ bÞ-direction
(b). Appropriate symmetry labels are given for each case.
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simple qualitative arguments influencing experimental
work.

2. Band structure and Fermi surface of low-dimensional

transition metal oxides and bronzes

Low-dimensional transition metal oxides and bronzes
with partially filled t2g-block bands have been the object
of much attention [7b, 15–24]. Some of these systems
have been known for a longtime but their low-
dimensional behavior had not been explored. In
particular molybdenum and tungsten oxides and
bronzes have attracted the interest of the solid state
community because of the unusual physical properties
they exhibit associated with Fermi surface electronic
instabilities. The blue bronzes A0.3MoO3 (A ¼ K; Rb,
Tl), the purple bronzes A0.9Mo6O17 (A ¼ Li; Na) and
AMo6O17 (A ¼ K; Tl), the Magnéli phases Mo4O11,
Mo8O23 and Mo9O26, as well as the large family of
monophosphate tungsten bronzes, are some of the better
studied materials of this class [7b, 15–24]. From the
structural viewpoint, all these systems are 2D or 3D
materials but several of them behave as if they were 1D
or pseudo-1D in terms of their physical behavior.

Many of these solids contain transition metal–oxygen
layers made up of edge- and corner-sharing MO6

octahedra and have large and complex unit cells. For
the systems with low average d electron count (i.e., d1 or
smaller) and several nonequivalent transition metal
atoms in the unit cell, only a certain number of
transition metal atoms can have d electrons and thus
become responsible for their metallic properties. Thus,
in order to understand the low-dimensional properties
of these systems we must be able to identify, on the basis
of the crystal structure, what transition metal atoms
possess the d electrons. In some cases, just on the basis
of such approach, the fact that the solid can exhibit a
physical behavior suggestive of a dimensionality which
is lower than expected on the basis of the crystal
structure, can be understood [7b]. However, this is only
a first step in trying to understand the properties of these
solids. In order to clarify the origin of their electronic
instabilities, we must also be able to build qualitatively
the Fermi surface and thus, the band structure, on the
basis of the structural information.

This is an area where simple qualitative arguments
supplemented by extended Hückel type calculations
have been of major value [7b]. This kind of approach
was remarkably successful in rationalizing most of the
transport properties anomalies in these systems and was
in fact predictive in some cases. They also led to the
development of the ‘hidden nesting’ concept [25] which
was found essential in understanding the nature of the
Fermi surface and physical properties of systems like the
potassium and sodium purple bronzes, the Magnéli

phases g- and Z-Mo4O11, and monophosphate tungsten
bronzes. Recent photoemission studies have provided a
confirmation for these extended Hückel-type Fermi
surfaces [26–29]. Yet these studies also pointed out
some inadequacies concerning the band dispersions
calculated with the extended Hückel method which
were found to be too small by a factor of two and in
some cases, like the blue bronzes, there were some
disagreements in the relative dispersion of some bands.
Later, first principles DFT calculations [30] confirmed
the nature of the Fermi surface while providing values
for the band dispersion in excellent agreement with the
photoemission studies. This is a clear example of the
complementarity of qualitative and quantitative ap-
proaches to the electronic structure of solids. It is indeed
remarkable that simple overlap and symmetry-based
arguments can lead to the prediction of the Fermi
surface of complex materials like these bronzes. The
simplicity of the arguments makes them a very useful
tool in understanding the properties of many other low-
dimensional metallic solids. It is also understandable
that some aspects of their electronic structure cannot be
evaluated with quantitative accuracy as they do more
sophisticated type calculations.

In order to get a flavor of this kind of qualitative
approach let us consider the simple MO4 layer (see Fig.
6a) which can be formed from MO6 octahedra by
sharing the four equatorial oxygen atoms (Oeq). The t2g-
block band structure of this layer can be understood in
an extremely simple way. The d-block band levels of a
crystal structure obtained by sharing octahedral corners
are raised in energy when the orbitals of the bridging
oxygen atoms are allowed by symmetry to mix with the
metal d orbitals. Thus, all that should be done to
evaluate the dispersion of the bands is just count how
many oxygen p orbital contributions can be found in the
crystal orbitals for different points of the Brillouin zone.
With the system of axes shown in Fig. 6a the three t2g

orbitals are the xy; xz and yz: The crystal orbitals for the
xy orbital at G; X and M are shown in Fig. 7, where
dots indicate the absence of oxygen p orbitals. Those for
the xz and yz orbitals are shown in Figs. 8 and 9,
respectively. The qualitative band diagram can only be
obtained if the oxygen contributions from the axial
oxygen atoms (Oax; see Fig. 6a) are also taken into
account. For simplicity, these axial contributions are not
shown in Figs. 7–9. However, it is obvious that there are
two axial contributions per metal atom in the crystal
orbitals of Figs. 8 and 9 but none for those in Fig. 7. The
total number of oxygen antibonding contributions per
unit cell to the xy; xz and yz crystal orbitals are
summarized in Table 1, where Y/N and y/n indicate the
presence/absence of such contributions in the bridging
and axial oxygen positions, respectively. As shown
elsewhere [7b], the energy destabilization of an oxygen
p contribution in the bridging (Y) and axial (y) positions
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are related through the relationship YE4y: Thus, a
qualitative band structure for the MO4 single octahedral
layer can be obtained (see Fig. 10a) by counting the total
number of oxygen contributions and using that relation
[31,32].

Several important conclusions can be drawn from
Fig. 10a if we keep in mind that because of the low d

electron count we are mainly interested in the
bottom portion of the t2g-block bands. First, we note
that the lowest energy crystal orbital states occur around
the special point G; and that these states are located in
the xy band. Second, the electronic energy band derived
from this orbital has significant dispersion in both
directions of the layer. Third, the xz band is dispersive
only along G-X (i.e., along the a�-direction). Fourth,
the yz band is dispersive only along G-Y (i.e., the b�-
direction). In conclusion, the t2g-block band structure
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Fig. 8. Schematic representation of the xz-based crystal orbitals of

the MO4 lattice of Fig. 6a at G (a), X (b) and M (c).

Fig. 9. Schematic representation of the yz-based crystal orbitals of

the MO4 lattice of Fig. 6a at G (a), X (b) and M (c).

Fig. 7. Schematic representation of the xy-based crystal orbitals of

the MO4 lattice of Fig. 6a at G (a), X (b) and M (c).

Fig. 6. (a) MO4 layer generated by equatorial oxygen sharing of MO6

octahedra; (b) M2O7 double layer generated from the MO4 layers by

axial oxygen sharing.
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of the MoO4 layer is the superposition of a two-
dimensional (2D) band and two one-dimensional (1D)
bands along the a- and b-directions, respectively. The
lowest lying levels of the t2g-block band are those of
the 2D band. These results can however be affected by
the nature of any octahedral distortion and the possible
layer condensations leading to more complex lattices.

Let us first consider the case of the M2O7 double
octahedral layers present in the structure of Sr3V2O7

[33]. The M2O7 double layers can be formed from
two MO4 layers by sharing their axial oxygen atoms (see

Fig. 6b). The octahedra in the Sr2O7 double layers are
quite regular. For instance, the nonbridging M2Oax

bond length is only 0.048 Å shorter than the average
M–O bond distance. Thus, the band structure of the
Sr2O7 double layer can be constructed just by consider-
ing the effect of the layer condensation on the
qualitative results of Fig. 10a. This is in fact quite
simple. The orbitals of each M2Oax2M linkage leading
to the six t2g-block bands are shown in Fig. 11a–c (for
simplicity, the contributions of the nonbridging Oax

orbitals are not shown in Fig. 11). The xyþ and xy�
combinations are practically degenerate because the
bridging p orbitals of the Oax atom cannot interact with
the xy orbitals due to the d symmetry along the
M2Oax2M axis. The number of oxygen p orbital
contributions per unit cell of the double octahedral layer
to the xyþ and xy� bands are thus identical and just
twice those of the single octahedral layer. The xzþ and
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Table 1

Antibonding contributions per unit cell of the oxygen p orbitals in

the t2g-block bands of the MO4 octahedral lattice of Fig. 6a

Band Crystal

orbital

Wave

vector

point

Bridging

contributions

Axial

contributions

xy Fig. 7a G NN nn

Fig. 7b X YN nn

Fig. 7c M YY nn

xz Fig. 8a G NN yy

Fig. 8b X YN yy

Fig. 8c M YN yy

yz Fig. 9a G NN yy

Fig. 9b X NN yy

Fig. 9c M NY yy

Fig. 10. Qualitative representation of the band dispersion for the t2g-

block bands of the MO4 (a) and M2O7 (b) lattices of Figs. 6a and b,

respectively.

Fig. 11. Schematic representation of the two t2g-type orbitals of the

M–Oax–M linkage built from the xz (a), yz (b) and xy (c) orbitals

leading to the six t2g-block bands of the M2O7 lattice.
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yzþ combinations are lower than the xz� and yz� because
they do not have p orbital contributions at the bridging
axial position. The number of oxygen p orbital contribu-
tions per unit cell of the double octahedral layer to the xzþ
and yzþ bands are twice those of the single octahedral
layer minus two axial contributions (2y ¼ Y=2). Those of
the xz� and yz� bands are the same as those of the xzþ
and yzþ bands plus one bridging contribution (Y ) coming
from the M2Oax2M position. Thus the qualitative band
structure for the double octahedral layer can be easily
constructed and is shown in Fig. 10b.

With the oxidation states O2� and Sr2+ the vanadium
atoms in the V2O7 layers of Sr3V2O7 have a d1 electron
count. Thus, we are only interested in the lowest part of
the t2g-block band structure which occurs around the G
point. As clearly shown by the qualitative construction,
the only difference between the band structures of the
single and double layers around G is that there are two
2D bands in the case of the double layer instead of just
one for the single layer. Thus the four main conclusions
of the study of the single layer are still applicable here.
The extended Hückel band structure calculated using
the actual structure of the Sr2O7 double layers in
Sr3V2O7 is shown in Fig. 12a [31,34]. The agreement
with the qualitative model is almost perfect. Since there
are two electrons to fill the bands of Fig. 12a and the
bottom of the 1D bands are very near the bottom of the
2D bands, it is most likely that the Fermi level will cross
both types of bands. Thus it is predicted that the Fermi
surface of this system will contain two closed 2D
portions and two sets of parallel lines (1D portions)
perpendicular to the a- and b-directions, respectively.
The calculated extended Hückel Fermi surface [31,34]
is shown in Fig. 12b and is in complete agreement with
the previous analysis. Thus the Fermi surface of the
double octahedral layers in Sr3V2O7 contains both 2D
and 1D contributions and this result can be understood
on a purely qualitative basis.

As a second example let us briefly consider the
structurally more complex case of the lithium purple
bronze Li0.9Mo6O17 [35]. This bronze has a 3D crystal
structure but exhibits pseudo-1D type conductivity and
eventually becomes superconducting at 2K [18,35,36].
Li0.9Mo6O17 has 2.9 electrons per six molybdenum
atoms and consequently, only the bottom portion of the
t2g-block bands can be filled. As shown in Fig. 13a,
Li0.9Mo6O17 contains a 3D network of Mo–O bonds
made of octahedral layers connected through MoO4

tetrahedra. The Li atoms reside in the open channels left
free in between the layers [35].

Before studying the electronic structure of Li0.9
Mo6O17 we must consider the effect on the t2g orbitals
of the octahedral distortions found here as well as in
many of these oxides and bronzes. The t2g levels of a
regular MoO6 octahedron have antibonding combina-
tions between the Mo d orbitals and the O p orbitals.

Hence, a shortening of an Mo–O bond length (usually
accompanied by the lengthening of the opposite Mo–O
bond) raises the energy of any t2g orbital if it has an
antibonding combination between the Mo and O
orbitals along the shortened Mo–O bond. Consequently,
a distortion where one Mo–O bond is shortened leaves
one t2g level (i.e., that which is in a plane perpendicular
to the shortened Mo–O bond) and raises the energy of
the remaining two levels (see Fig. 14). By contrast, all
three t2g levels are raised by a distortion in which two or
more Mo–O bonds along orthogonal directions are
shortened (and the two opposite Mo–O bonds are
lengthened). Thus, inspection of the nature and extent of
the octahedral distortions allows the prediction of which
octahedra of a given oxide lattice would have d electrons
and what kinds of occupied (or partially occupied) t2g-
block bands the oxide is likely to have [7b].

The octahedral layers of Li0.9Mo6O17 have four
different types of molybdenum atoms: MoA, MoB,
MoC and MoD. The different MoO6 octahedra in these
layers share six to three of their oxygen atoms with
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Fig. 12. (a) t2g-block band structure and (b) Fermi surface calculated

for the V2O7 double octahedral slabs of Sr3V2O7. G; X and M refer to

the wave vectors (0, 0), (a�=2; 0) and (a�=2; a�=2), where a is the repeat

vector of the square lattice.
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MoO6 octahedra and the remaining ones with MoO4

tetrahedra. Consequently, each MoO6 octahedron can
be classified as an (m þ n) octahedron, where m and
n are the oxygen atom numbers shared with MoO6

octahedra and MoO4 tetrahedra, respectively. Then, the
four different molybdenum atoms MoA to MoD are
associated with octahedra of types (5+1), (6+0), (4+2)
and (3+3), respectively (see Fig. 13a). The MoO4

tetrahedra have in average much shorter Mo–O bonds
than do the MoO6 octahedra. All octahedra of the
structure have three short and three long Mo–O
distances. However, the short Mo–O bonds of the
(3+3) and (4+2) octahedra are shorter than those of
the (5+1) and (6+0) octahedra. Therefore, the lowest
lying d-block bands of Li0.9Mo6O17 are expected to be
largely represented by the t2g-levels of the (5+1) and
(6+0) octahedra (i.e., the t2g-levels of MoA and MoB).
These two types of octahedra are hatched in Fig. 13a.
Therefore, according to the crystal structure analysis,
the lowest lying d-block bands of Li0.9Mo6O17 would be
given by the t2g-block bands of the isolated Mo4O18

chains singled out in Fig. 13a. Hence Li0.9Mo6O17 is
expected to exhibit pseudo-1D electrical properties.
Thus, the pseudo-1D electrical behavior of Li0.9Mo6O17

can be easily understood just on the basis of an analysis
of the crystal structure taking into account very simple
orbital interaction ideas.

The calculated extended Hückel band structure and
Fermi surface for Li0.9Mo6O17 are reported in Fig. 13b
and c. Although not reported here, an orbital interac-
tion analysis similar to that presented for the double
octahedral layers can be easily carried out for this
system also [38]. It leads to a qualitative band structure
and Fermi surface which again are in excellent agree-
ment with the calculated extended Hückel results. The
Fermi surface of Fig. 13c consists of two superposed
pairs of parallel lines perpendicular to the b�-direction,
which is in agreement with the fact that the Mo4O18

chains run along the b-direction (see Fig. 13a). The
Fermi surface of Fig. 13c is in excellent agreement with
the results of angle resolved photoemission experiments
[26,27a,29,37]. The band structure of Fig. 13b is also in
very good agreement with that derived from the
photoemission studies but the dispersion of the bands
is typically underestimated. This is a common result for
most of these low-dimensional oxides and bronzes. If
quantitative accuracy for the band dispersion is required
one must carry out first principles DFT calculations
[30,39,40].1 However, as far as the Fermi surface or the
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Fig. 14. Schematic representation of the splitting of the octahedral t2g

orbitals when there is a bond length alternation along one or two of the

octahedral axis directions.

Fig. 13. (a) Schematic drawing of the crystal structure of Li0.9Mo6O17,

where each triangle or tetragon with an Mo atom represents an MoO4

tetrahedron or MoO6 octahedron, respectively. Calculated band

structure (b) and Fermi surface (c) for Li0.9Mo6O17. G; Y and Z refer

to the wave vectors (0, 0, 0), (0, b�=2; 0), (0, 0, c�=2).

1Although use of a double-z basis set (not only for the transition

metal d orbitals but for all of them) in extended Hückel calculations

increases the band dispersion, the band shape does not always

reproduce in detail that coming out from the more sophisticated

DFT calculations (see for instance Refs. [30a,40] for the blue bronzes).

Consequently, for quantitative purposes the DFT calculations seem to

be more appropriate.
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qualitative nature of the band structure is concerned, the
simple extended Hückel calculations already provide
the right answer [7b].

Many examples of the application of this type of
analysis to low-dimensional metals with partially filled
t2g-block bands have been reported in the literature and
have provided quite a good understanding of otherwise
puzzling observations [7b]. It is clear that very simple
ideas based on overlap, symmetry and chemical bonding
arguments can lead to very good qualitative band
structures and Fermi surfaces for this class of materials
and thus provide a simple yet very powerful tool to
understand their electronic structures and the origin of
their interesting behavior. First principles calculations
are necessary however when the real shape of the band
dispersion is required (i.e., when trying to rationalize
studies concerning photoemission, thermopower, etc.).
Thus, this is a problem in which qualitative and
quantitative approaches nicely complement each other.

3. Correlation between the crystal and electronic

structure of Ca2AuN

The reason underlying the success of the qualitative
treatments described in the previous sections is either the
existence of strong symmetry constraints and/or the fact
that since oxygen is very electronegative its orbitals are
reasonably lower than the transition metal ones. When
this is not the case, qualitative approaches can be less
successful and first principles calculations may be a
more judicious choice. For instance, the metallic layered
ternary nitrides CaTaN2 [41] and LiMoN2 [42] possess
hexagonal TaN2

2� and MoN2
� layers in which the

transition metal atoms are octahedrally and trigonal-
prismatically coordinated, respectively. Thus, the formal
d-electron count for the transition metal is d1 in both
cases. Qualitative arguments (and extended Hückel
calculations) would predict that both compounds should
have a half-filled transition metal-based band. Recent
linearized augmented plane wave (LAPW) calculations
[43] have shown that this is indeed the case for CaTaN2

but not for LiMoN2. In the latter, two bands are
partially filled; one of the heavily nitrogen-based bands
overlaps with the lower Mo d-based band and is thus
partially empty. This means that the nitrogen atoms
must be considered in a N(3�x)� formal oxidation state
and thus the d-electron count for Mo is d1þx: One of the
consequences is that whereas CaTaN2 is a typical 2D
metal, LiMoN2 is a 3D metal in contrast with simple
expectations. Thus, depending on the nature and/or
local coordination of the transition metal atom, some of
the transition metal-based bands of transition metal
layered ternary nitrides can dip into the manifold of the
ligand-based bands because these are not so far apart as
in the case of the oxides. This will make the electronic

structure more complex and, in general, only quantita-
tive approaches can describe satisfactorily the situation.
However, even in cases like this in which it is predictable
than qualitative approaches can be problematic, these
qualitative approaches are and will remain extremely
helpful in providing ideas and models by which to
understand the results of the quantitative calculations.

In order to illustrate this point let us consider the case
of the ternary nitride Ca2AuN [44]. This compound has
an interesting structure in which layers formed from
zigzag chains of gold atoms are sandwitched between
those of edge-sharing Ca6N octahedra (Fig. 15). The
gold chains are regular, with inter-gold distances of
2.86 Å, which are slightly shorter than those found in
metallic gold (2.88 Å). The coordination sphere of gold
atoms in this structure is completed with seven calcium
atoms with distances in the range 3.14–3.24 Å. Within
each layer, gold chains run parallel to each other
separated by intra-chain gold–gold distances of 3.58 Å.
Electron counting gives (Ca2+)2AuN3� oxidation states
which corresponds to a d10s2 configuration for gold
atoms. In this case, qualitative arguments lead to the
conclusion that two electrons will occupy the over-
lapping Au(6s) and Au(6p) bands and hence give a
metallic character to the chains. If, as suggested by the
structural representation in Fig. 15, interaction between
gold chains is small, Ca2AuN should be a pseudo-1D
metal with good conductivity along the direction of the
gold chains (the crystallographic c-axis).

In order to correlate the crystal structure with the
electronic properties of Ca2AuN we decided to study its
electronic structure to see if the calculated Fermi surface
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Fig. 15. Crystal structure of Ca2AuN in which the zigzag gold chains

running parallel to the c-axis and the layers of edge sharing Ca6N

octahedra have been highlighted.
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agrees with the predicted 1D metallic character for this
compound. As mentioned above, the use of first
principles methods is necessary to capture subtle details
of the electronic structure of transition metal nitrides
that might be essential for a correct prediction of their
electronic properties. The calculations presented here
were carried out using a numerical atomic orbitals DFT
approach [45,46], which has been recently developed and
designed for efficient calculations in large systems and
implemented in the SIESTA code [47,48]. The use of
atomic orbitals instead of plane waves greatly facilitates
a chemical analysis of the results. We have used the
generalized gradient approximation to DFT and, in
particular, the functional of Perdew, Burke and Ernzer-
hof [49]. Only the valence electrons are considered in the
calculation, with the core being replaced by norm-
conserving scalar relativistic pseudo-potentials [50]
factorized in the Kleinman-Bylander form [51]. We
have used a split-valence double-z basis set including
polarization orbitals for all atoms, as obtained with an
energy shift of 500meV [52]. The integrals of the self-
consistent terms of the Kohn-Sham Hamiltonian are
obtained with the help of a regular real space grid in
which the electron density is projected. The grid spacing
is determined by the maximum kinetic energy of the
plane waves that can be represented in that grid. In the
present work, we used a cutoff of 475Ry. The Brillouin
zone (BZ) was sampled using a grid of (20� 4� 16)
k-points [53]. We have checked that the results are
well converged with respect to the real space grid, the
BZ sampling and the range of the atomic orbitals.

The calculated Fermi surface (Fig. 16) can be
described as resulting from the hybridization of four
cylinder-like branches centered around the X point of
the first Brillouin zone. Of these four branches three of
them have an elliptical section (with its major axis
parallel to the G-Z direction) that is more or less the
same for all planes perpendicular to the G-Y direction.
The fourth branch has a section with the shape of a
rhombus with its longer diagonal in the G-X direction.
It is interesting to note that the area enclosed by this
fourth branch shrinks when moving from X to S giving
rise to a warped cylinder-like surface with a rounded
diamond-shaped section. The Fermi surface found in
our calculations is strongly in disagreement with the
prediction of Ca2AuN being a 1D metal since it
corresponds clearly to a 2D metal with conductivity
mainly in the crystallographic ac plane. It can be seen
thus that if the gold atoms are responsible for the
electrical properties of this material, their conductivity is
not circumscribed to the direction of the chains. The
shape of the calculated Fermi surface clearly indicates
the existence of conductivity in the direction perpendi-
cular to the chains. To be rigorous, the warping of the
Fermi surface in the G-Y direction will also give raise
to some conductivity along the b-direction, so that

Ca2AuN is predicted to be a strongly anisotropic 3D
metal with its conductivity being mainly in the ac plane.

In order to understand the seemingly unexpected
results derived from the analysis of the Fermi surface we
must describe the electronic structure of this solid with
more detail. The first task, which is the determination of
the character of the bands that give rise to the Fermi
surface can be accomplished by an inspection of the
calculated density of states (DOS) and its atomic
projections (Fig. 17). The three principal peaks in the
DOS correspond to the low lying N 2s orbitals (peak
around �12 eV), the Au 5d orbitals (peak between �2
and �5 eV) and the N2p orbitals (peak around �1 eV).
The Au 5d band appears overlapped with a very broad
Au 6s band which is almost filled, confirming the Au�

oxidation state derived from electron counting. The
bands that cross the Fermi level are found to arise
mainly from Au 6s and 6p orbitals with a small but
nonnegligible contribution from Ca orbitals. This
picture confirms that conductivity in Ca2AuN is mainly
restricted to the gold layers.

The most interesting features of the calculated band
structure (Fig. 18) are found, as expected from the shape
of the Fermi surface, around the X point in the first
Brillouin zone. A filled, doubly degenerated band at G
raises in energy crossing the Fermi level in the G-X

direction giving rise to two of the branches of the Fermi
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Fig. 16. Calculated Fermi surface for Ca2AuN shown in two planes

perpendicular to the G-Y direction of the Brillouin zone: (a) ky ¼ 0

and (b) ky ¼ 0:5: G ¼ ð0; 0; 0Þ; X ¼ ða�=2; 0; 0Þ; Z ¼ ð0; 0; c�=2Þ;
S ¼ ða�=2; b�=2; 0Þ; U ¼ ða�=2; 0; c�=2Þ; R ¼ ða�=2; b�=2; c�=2Þ and

T ¼ ð0; b�=2; c�=2Þ:
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surface. The other two branches belong to two highly
dispersive empty bands that cross the Fermi level in k-
points which lie in directions perpendicular to the X-S

line and not far from it. A more detailed analysis of the
orbitals giving rise to these four bands is however very
difficult because of the presence of many different
orbitals that strongly mix together. This is specially the
case in Ca2AuN for bands below the Fermi level where
the band diagram is extremely complicated due to the
presence of the N 2p orbitals.

One of the important drawbacks found for qualitative
extended Hückel-type calculations when applied to
transition metal nitrides, i.e. the weak mixing of
nitrogen orbitals with the metal ones, can be however

used in this case to simplify the analysis. Extended
Hückel calculations for Ca2AuN give an essentially
correct picture of the electronic structure of this material
with two important quantitative differences. First, the
broad Au 6s; 6p band does not penetrate the narrower
Au 5d band, and, second, the N 2p bands appear slightly
higher in energy than the Au 5d ones, but separated by a
gap from the higher lying Au 6s; 6p band (Fig. 19).
When looking at the extended Hückel band structure
(Fig. 20, left panel) we find however that the bands
related to the conductivity, those crossing the Fermi
level, are essentially the same as those in the first
principles band structure. The absence of nitrogen
centered bands simplifies the band diagram facilitating
now the analysis of the orbital interactions responsible
for the shape of these four bands. Looking at the
different orbital contributions it is easy to deduce that
the lower lying bands are formed by s/p lone pair
orbitals of the gold chains (Fig. 21a) while the two
empty bands that dip below the Fermi level around
the X-S direction correspond to p-type orbitals of the
chains (Fig. 21b).

The last question that must be addressed is the origin
of the dispersion of these bands in the direction
perpendicular to the chains (G-X direction in the
Brillouin zone). For this purpose qualitative extended
Hückel calculations are very helpful since there is no
problem in performing a calculation for different
fragments of the structure. In the present context, it is
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Fig. 17. Total and projected DFT density of states of Ca2AuN

projected onto the Ca, Au and N sites. The line at 0 eV refers to the

Fermi level.

Fig. 18. DFT band structure for Ca2AuN where G ¼ ð0; 0; 0Þ; X ¼
ða�=2; 0; 0Þ; Y ¼ ð0; b�=2; 0Þ; Z ¼ ð0; 0; c�=2Þ; U ¼ ða�=2; 0; c�=2Þ;
S ¼ ða�=2; b�=2; 0Þ; T ¼ ð0; b�=2; c�=2Þ; R ¼ ða�=2; b�=2; c�=2Þ: The

line at 0 eV refers to the Fermi level.

Fig. 19. Extended Hückel density of states of Ca2AuN. The shaded

area corresponds to the projection for the Au atoms. The dashed line

refers to the Fermi level.
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very helpful to carry out a calculation for an isolated
Au� layer (Fig. 20, right panel) and compare its bands
with those obtained for the whole Ca2AuN structure
(Fig. 20, left panel). The most important difference that
is visible at a first glance is that a single Au� layer is
predicted to be insulating with the Fermi level located at
the top of the lone pair-type s=p band (notice that for
the whole structure all bands are doubled in the diagram
since there are two Au� layers per unit cell). Dispersion
along the G-X direction is much smaller for the
isolated gold layers, especially for the empty p-type
bands that are now not able to cross the Fermi level.
Where do we find the origin of the dispersion in the full
structure? A careful analysis of the orbital contributions
to the p-type bands shows that there is a significant
mixing of 4s orbitals from the adjacent Ca1 atoms into
these bands which results in an important energy
lowering around the X-S direction of the Brillouin

zone due to Au 6p2Ca 4s bonding interactions. The
origin of conductivity in the Ca2AuN structure can thus
be traced to Ca–Au interactions (the Ca1–Au distance is
3.242 Å) that have not been highlighted in the descrip-
tion of the structure. According to our analysis of the
electronic structure, the description of Ca2AuN as being
formed by layers of zigzag gold chains sandwitched
between layers of Ca6N octahedra is somewhat mis-
leading. Our results indicate that, as previously stated in
Ref. [44] a much more sensible description of Ca2AuN is
that of CaN zigzag chains (i.e., the Ca2N zigzag chains)
inserted into the CaAu structure [54].

In this example we have shown that the simultaneous
use of first principles and qualitative electronic structure
methods might be necessary in some cases to get a real
understanding of the relationship between the crystal
structure of a material and its electronic properties. The
first principles calculations provide a detailed electronic
structure which is however very difficult to understand
due to the extensive mixing of orbitals and the use of
multiple-z basis sets with polarization functions.
Although these are necessary to get the correct band
structure, they make the analysis of the electronic
structure in chemical terms enormously difficult. The
value of the qualitative calculations in this case comes
from the fact that the essential trends of the bands
responsible for the conductivity of the solid are well
reproduced. An invaluable analytical tool, the splitting
of the solid in fragments, which is not feasible in first
principles calculations, gives us here the clues to deduce
that the ‘‘natural fragments’’ in this case are not the
simple gold chains and Ca6N octahedra, but complex
CaAu layers and CaN chains which otherwise would be
difficult to realize.

4. Concluding remarks

Advances in density functional theory methods have
made first principles calculations feasible for solids of
very large size. These calculations provide detailed
information concerning the band structure, Fermi sur-
face, electron density, etc., which is extremely valuable
in rationalizing (and even predicting) a large body of
experimental results. These calculations often require a
heavy computational investment and the results are
sometimes difficult to translate into the everyday
language of the solid state chemist. Many aspects of
the electronic structure of solids can however be
qualitatively explained by the much simpler extended
Hückel type approach. The transparency of the method
allows a step-by-step construction of the electronic
structure of solids from those of selected parts of the
structure and thus provides an invaluable tool when
trying to relate the crystal and electronic structure of
solids. A combination of the two approaches is an
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Fig. 20. Extended Hückel band structure for Ca2AuN (left panel) and

for one isolated Au� layer (right panel). The dashed lines refer to the

Fermi level.

Fig. 21. Schematic representation of the crystal orbitals associated

with (a) the filled bands and (b) the empty bands that cross the Fermi

level in the G-X direction.
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extremely powerful tool in the hands of any solid state
chemist.
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